Uso di un socaas cover Giacomo Lanzi

Use cases of a SOCaaS for companies part 2

Estimated reading time: 5 minutes

In the previous article we have seen the most common use cases of a SOCaaS , explaining how it can be useful for companies to use this tool to prevent cyber attacks and also explaining which are the most common Threat Models .

In this article, however, we will take a closer look at some of the more common indicators of compromise (IOC). First we will briefly look at the malware threat models that the use of a SOCaaS can prevent and block. As it works, a SOCaaS can be very flexible and analyze a lot of data at the same time, thus providing in-depth and accurate results.

use of a socaas network

Malware Threat Models

It is important to know how to distinguish and classify the different types of malware to understand how they can infect systems and devices, the level of threat they represent and how to protect against them. We at SOD recommend adopting the use of a SOCaaS in order to be able to classify the entire range of malware or potentially unwanted objects. Malware is categorized based on the activity they perform on infected systems.

Wannacry Malware Detection

Thanks to this threat model it is possible to detect the behavior of the well-known malware Wannacry.
Wannacry malware is a
ransomware that attacks the system by encrypting files of particular importance to an organization in order to make them illegible.

Early detection of ransomware is probably the most effective action you can take to defend yourself. There are also services that are able to block the action of the malware and restore any files already encrypted with those of a backup, for example Acronis Cyber Protect Cloud .

Network anomaly followed by data infiltration

Identifies successful network data aggregation attempts, followed by signs of data infiltration. Below we see some of the anomalies and how the use of a SOCaaS can identify important clues to counter threats.

During a network scan you may notice enumerations of AD accounts and privileges, count of LDAP services outside the corporate network and a suspicious number of ticket requests to Kerberos protocol . In addition, other indicators can be a spike in LDAP traffic and the enumeration of SMB services.

As regards the anomalies of the network drive , the use of a SOCaaS is able to control access to the sharepoint in order to identify an unusual number of accesses to shared elements. This also in relation to users and their level of access.

In terms of Data Aggregation and data infiltration, the quantity of bytes downloaded from the server ports and via FTP protocols are monitored, as well as an unusual quantity of bytes transmitted to the external.

Petrwrap / Goldeneye / Amalware detection

This threat model aims to detect malware Petrwrap . The use of a SOCaaS can detect network scanning activity by monitoring the number of SMBv1 activities, as well as anomalies in these activities. Attempting to reach a never-before-reached host may also be an indicator.

Another way in which these threats can be detected with the use of SOCaaS is by auditing of suspicious privileged activity. For example, it is verified that there is no escaletion of privileges, unusual access to an admin zone or even tampering with log files.

Risk indicators in general

Risk indicators are metrics used to show that the organization is subject to or has a high probability of being subject to a risk.

These indicators are used to classify the type of behavior or threat for a policy and can be used in multiple policies for different functionality based on the data source. Risk indicators can be chained with threat models to identify sophisticated attacks across multiple data sources.

In essence, these are clues or alarm bells that indicate events that a company’s security operators should pay particular attention to. The use of a SOCaaS can help identify these clues by analyzing large amounts of data and logs in a short time.

Below is a non-exhaustive list of some of the most common threat indicators that are identifiable through the use of a SOCaaS. We will divide them into different areas, for clarity.

As for accounts, obviously, blocking an account is an alarm bell, as well as an unusual number of accounts created or a disproportionate number of failed authentication. Finally, the use of a SOCaaS could indicate an IOC as a suspicious number of accounts running concurrently .

Access

The anomalies concerning the access or in any case the account include the detection of access to the anomalous administrative sherepoint but also the loading times of the anomalous applications. Applications that use an unusual amount of memory may also be indicators of compromise.

As for accounts, obviously, blocking an account is an alarm bell, as well as an unusual number of accounts created or a disproportionate number of failed authentication. Finally, the use of a SOCaaS could indicate an IOC as a suspicious number of accounts running concurrently .

Use of a socaas cover

Networks

Network alarm bells are, of course, the most common. Since networks are like “roads” of a corporate infrastructure, it is normal that anomalous behaviors in these are particularly relevant.

Common indicators are abnormal DNS zone transfers or failed requests to the firewall. But also an abnormal number of running hosts or ICMP connections. Traffic in general is also controlled through the use of SOCaaS, so that any suspicious data movement is analyzed or otherwise verified. Examples of this are packet movements to critical ports, RDP, SSH, or connection attempts to a DHCP server. These events often indicate abnormal attempts to connect to objects or network shares.

Through the use of a SOCaaS it is also very simple to control the behavior of the accounts that often show alarm bells in themselves . For example, an account logging into a host for the first time, creating an account, or adding privileges.

Conclusions

Relying on luck to catch threats is madness , as demonstrated by SolarWinds attack .

Create your luck with our SOCaaS solution , making sure you spot threats before incidents happen and that you are “lucky” enough to counter them.

Contact us to find out how our services can strengthen your company’s defenses, we will be happy to answer any questions.

Useful links:

Share


RSS

More Articles…

Categories …

Tags

RSS Unknown Feed

RSS Full Disclosure

  • SEC Consult SA-20250604-0 :: Local Privilege Escalation and Default Credentials in INDAMED - MEDICAL OFFICE (Medical practice management) Demo version June 10, 2025
    Posted by SEC Consult Vulnerability Lab via Fulldisclosure on Jun 09SEC Consult Vulnerability Lab Security Advisory < 20250604-0 > ======================================================================= title: Local Privilege Escalation and Default Credentials product: INDAMED - MEDICAL OFFICE (Medical practice management) Demo version vulnerable version: Revision 18544 (II/2024) fixed version: Q2/2025 (Privilege Escalation, Default Password)...
  • Full Disclosure: CVE-2025-31200 & CVE-2025-31201 – 0-Click iMessage Chain → Secure Enclave Key Theft, Wormable RCE, Crypto Theft June 10, 2025
    Posted by josephgoyd via Fulldisclosure on Jun 09Hello Full Disclosure, This is a strategic public disclosure of a zero-click iMessage exploit chain that was discovered live on iOS 18.2 and remained unpatched through iOS 18.4. It enabled Secure Enclave key theft, wormable remote code execution, and undetectable crypto wallet exfiltration. Despite responsible disclosure, the research […]
  • Defense in depth -- the Microsoft way (part 89): user group policies don't deserve tamper protection June 3, 2025
    Posted by Stefan Kanthak on Jun 03Hi @ll, user group policies are stored in DACL-protected registry keys [HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Policies] respectively [HKEY_CURRENT_USER\Software\Policies] and below, where only the SYSTEM account and members of the "Administrators" user group are granted write access. At logon the user&apos;s registry hive "%USERPROFILE%\ntuser.dat" is loaded with exclusive (read, write and...
  • CVE-2025-45542: Time-Based Blind SQL Injection in CloudClassroom PHP Project v1.0 June 3, 2025
    Posted by Sanjay Singh on Jun 03Hello Full Disclosure list, I am sharing details of a newly assigned CVE affecting an open-source educational software project: ------------------------------------------------------------------------ CVE-2025-45542: Time-Based Blind SQL Injection in CloudClassroom PHP Project v1.0 ------------------------------------------------------------------------ Product: CloudClassroom PHP Project Vendor:...
  • ERPNext v15.53.1 Stored XSS in bio Field Allows Arbitrary Script Execution in Profile Page June 3, 2025
    Posted by Ron E on Jun 03An authenticated attacker can inject JavaScript into the bio field of their user profile. When the profile is viewed by another user, the injected script executes. *Proof of Concept:* POST /api/method/frappe.desk.page.user_profile.user_profile.update_profile_info HTTP/2 Host: --host-- profile_info={"bio":"\">"}
  • ERPNext v15.53.1 Stored XSS in user_image Field Allows Script Execution via Injected Image Path June 3, 2025
    Posted by Ron E on Jun 03An authenticated user can inject malicious JavaScript into the user_image field of the profile page using an XSS payload within the file path or HTML context. This field is rendered without sufficient sanitization, allowing stored script execution in the context of other authenticated users. *Proof of Concept:*POST /api/method/frappe.desk.page.user_profile.user_profile.update_profile_info HTTP/2 […]
  • Local information disclosure in apport and systemd-coredump June 3, 2025
    Posted by Qualys Security Advisory via Fulldisclosure on Jun 03Qualys Security Advisory Local information disclosure in apport and systemd-coredump (CVE-2025-5054 and CVE-2025-4598) ======================================================================== Contents ======================================================================== Summary Mitigation Local information disclosure in apport (CVE-2025-5054) - Background - Analysis - Proof of concept Local information disclosure in systemd-coredump...
  • Stored XSS via File Upload - adaptcmsv3.0.3 June 3, 2025
    Posted by Andrey Stoykov on Jun 03# Exploit Title: Stored XSS via File Upload - adaptcmsv3.0.3 # Date: 06/2025 # Exploit Author: Andrey Stoykov # Version: 3.0.3 # Tested on: Debian 12 # Blog: https://msecureltd.blogspot.com/ Stored XSS via File Upload #1: Steps to Reproduce: 1. Login with low privilege user and visit "Profile" > "Edit […]
  • IDOR "Change Password" Functionality - adaptcmsv3.0.3 June 3, 2025
    Posted by Andrey Stoykov on Jun 03# Exploit Title: IDOR "Change Password" Functionality - adaptcmsv3.0.3 # Date: 06/2025 # Exploit Author: Andrey Stoykov # Version: 3.0.3 # Tested on: Debian 12 # Blog: https://msecureltd.blogspot.com/ IDOR "Change Password" Functionality #1: Steps to Reproduce: 1. Login as user with low privilege and visit profile page 2. Select […]
  • Stored XSS "Send Message" Functionality - adaptcmsv3.0.3 June 3, 2025
    Posted by Andrey Stoykov on Jun 03# Exploit Title: Stored XSS "Send Message" Functionality - adaptcmsv3.0.3 # Date: 06/2025 # Exploit Author: Andrey Stoykov # Version: 3.0.3 # Tested on: Debian 12 # Blog: https://msecureltd.blogspot.com/ Stored XSS "Send Message" Functionality #1: Steps to Reproduce: 1. Login as normal user and visit "Profile" > "Message" > […]

Customers

Newsletter

{subscription_form_1}